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SECTION 1 
 
Question 1   Answer  D 
 

The quadratic in the denominator 2 2 9x bx+ +  has a discriminant of  
( ) ( )2 2 2

x x2 4 1 9 4 36 4 9b b bΔ = − = − = −  so 
 

If  0 3bΔ < < the quadratic has no real solutions, and hence ( )f x  has no vertical 
asymptotes,  option A. is true. 
 

If  0 3bΔ > > the quadratic has two real solutions, and hence ( )f x  has two vertical 
asymptotes,  option B. is true. 
 

The x-axis is a horizontal asymptote, option C. is true.  

however option  D. is false, when  2 2 0x b x b+ = = − , the point  2

1,
9

b
b

⎛ ⎞−⎜ ⎟−⎝ ⎠
 is a 

maximum turning point. 
 

When 10
9

x y= =  as the y-intercept, option E. is true.  
 

 
Question 2   Answer  D 
 

Find the intercepts of the two asymptotes,  3 11 3 7 6 18x x x+ = − − ⇒ = −  
So that when 3 2x y= − = , the centre is  ( ) ( )3, 2 ,h k− =  , 3 2h k= − = , 
now the distance from the centre to one of the vertices horizontally, that is from 

( ) ( )3, 2 to 1, 2− −  is 2 units, so  2a = , the asymptotes have gradients  3 b
a

± =    

so that  6b = . 
 
 

 
Question 3   Answer  C 

 

x 

2 5  

 1 

( ) ( )

( )

( ) ( )

( ) ( )
( )

( )

2

1 5cosec
sin 2

2sin
5

Since is in the 2nd quadrant
2

tan 0 tan 2

2 tan 4 4tan 2
1 tan 1 4 3
3cot 2
4

x
x

x

x x

x x

x
x

x

x

π π

= =

=

< <

< ⇒ = −

−
= = =

− −

=
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Question 4   Answer  E 
 

( ) ( ) ( )2cos 2 cos 4r t t i t j= +  

( ) ( ) ( )2 2cos 2 and cos 4 2cos 2 1x t y t t= = = −  
2 1y x= −  is the Cartesian equation, which is a straight line. 

 
 
Question 5   Answer  C 
 

4
2 2

2

ax by ax bx
x

−+
= = +  

32 2dy ax bx
dx

−= −   for turning points 0dy
dx

=  

3

22 bax
x

⇒ =        4 2b bx x
a a

= = ±    however there are two turning points, so there  

are solutions for  2 bx
a

=   so a and b must both be positive, or both be negative,   

the product  0ab >  so  0 and 0 or 0 and 0a b a b< < > >  is the only possibility 
listed. 
 

 
Question 6   Answer  C 
 

 

( )
( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )( )
( ) ( )

( ) ( )

2

cis

cos sin since cos cos and sin sin

cos sin

sin cos

sin cos

i

i i

i i

i i

i

θ

θ θ θ θ θ θ

θ θ

θ θ

θ θ

−

= − + − − = − = −

= −

= − +

= +

  

  
Question 7   Answer  E 
 
 
 
 
v  is the reflection of  v in the  
real axis, u  is a rotation of  v  

090   anti-clockwise from v,  
hence  u i v=  

v

( )Re z

( )Im z

v  

u
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Question 8   Answer  B 
 

( ) 1Arg tan ba bi
a

− ⎛ ⎞+ = ⎜ ⎟
⎝ ⎠

,  is only true, where the 1tan−  function is defined, that is 

,
2 2
π π⎛ ⎞−⎜ ⎟

⎝ ⎠
 or in the 1st and  4th quadrants, so 0 anda b R> ∈   

 
 

Question 9   Answer  E 
 

Let z x y i z x yi= + = − , checking each alternative, 
A.    ( ) 2 2i z z z z ix iy y x+ = − ⇒ = − ⇒ = −  

B. ( ) ( )2 22 21 1 1z z i x y x y+ = − ⇒ + + = + −  

 2 2 2 22 1 2 1x x y x y y y x+ + + = + − + ⇒ = −  

C. ( ) ( )2 22 21 1 1z z i x y x y− = + ⇒ − + = + +  

 2 2 2 22 1 2 1x x y x y y y x− + + = + + + ⇒ = −    

D. ( ) ( )Re Im 0z z y x+ = ⇒ = −  

E.  ( ) ( ) 3{ :Arg } { :Arg }
4 4

z z z zπ π
= − ∪ =   are two rays from the origin, making angles 

 of  3and
4 4
π π

−  however the origin is not included, it is not the full line y x= −  
 

 
Question 10   Answer  E 
 

If we look at the parametric graphs, we see that the paths cross twice,  
the paths are not parabolic and since, 

( ) ( ) ( ) ( )
( )( ) ( )( ) ( )( ) ( )( )

2 2 2 26 8 5 6 7 12 4 3

4 2 3 2 4 3 3 1

p t t i t t j q t t i t t j

p t t i t t j q t t i t t j

= − + + − + = − + + − +

= − − + − − = − − + − −
 

( ) ( ) ( ) ( )2 2 and 3 3p q p q≠ ≠  
P and Q are never in the same position. 
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Question 11   Answer  D 
 

3
7

PM PQ=  

andOP p OQ q= =  

 
 

( )
( )

( )

3
7
3
7
3
7

1 4 3
7

OM OP PM

OM OP PQ

OM OP PO OQ

OM OP OQ OP

OM p q

= +

= +

= + +

= + −

= +

 

 
Question 12   Answer  A 
 
 

Let  5 4 3 25 16 9 50 5 2a i j k a= − + = + + = =    
now a vector of  magnitude 10 in the opposite direction to a  is  

( )
( )

10ˆ10 5 4 3
5 2
2 5 4 3

a i j k

i j k

− = − − +

= − + −
 

 
 

Question 13   Answer  A 
 

Let  3 12 4 9 144 16 169 13s i j k s= − + − = + + = =   so that  ( )1ˆ 3 12 4
13

s i j k= − + −  

The scalar resolute of the vector r  in the direction of s  is 2− ,  so that  ˆ. 2r s = −   

The vector resolute of  r   perpendicular to s   is     ( ) ( )1ˆ ˆ. 20 2 21
13

r r s s i j k− = − −  

( ) ( )

( ) ( ) ( )

2 13 12 4 20 2 21
13 13
1 2 120 2 21 3 12 4 26 26 13

13 13 13
2 2

r i j k i j k

r i j k i j k i j k

r i j k

+ − + − = − −

= − − − − + − = − −

= − −

 

 
 

Q 

M 

P

O
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Question 14   Answer  A 
 

2 3

2
0 3 4

x dx
x +

⌠
⎮
⌡

        

let  2 21 43 4 6
6 3

du uu x x x dx du x
dx

−
= + = = =  

 
change terminals,   when  0 4x u= =  and when  2 16x u= =  
 

2 2

2
0

.
3 4

x x dx
x

=
+

⌠
⎮
⌡

16

4

1 4
18

u du
u

−⌠
⎮
⌡

 

 
 

Question 15   Answer  C 
 

Let 
2

1 21 and 2 xy y e−= = , to find the x-value where 1 2y y=  
2 2 212 1 2

2
x x xe e e− −= = =   

( ) ( )2 log 2 log 2e ex x= =  
22 2

2Now 4 xy e−=  so the volume required is 

( )2 2
2 1

b

x
a

V y y dxπ= −∫   where 1 2andy y  are the inner and outer radii respectively, 

( )( ) 2log 2

0

2 14e xV dxeπ −= −∫  
 

 
Question 16   Answer  B 
 
 
 

2 9v x=   for  0x > ,   
differentiating implicitly with respect to x, gives 

2 9dvv
dx

=     

so that  9 4.5
2

dva v
dx

= = =  
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Question 17   Answer  C 
 
 

 

 

 
 

resolving parallel to the plane   ( ) ( )1 cosT N maθ μ− =  

resolving perpendicular to the plane ( ) ( )2 sin 0T N mgθ + − =  
to find a  we need to eliminate N 
from ( ) ( )2 sinN mg T θ= −    substituting into ( )1  gives 

( ) ( )( )
( ) ( )
( ) ( )( )

( ) ( )

cos sin

cos sin

cos sin

cos sin

T mg T ma

ma T mg T

ma T mg

Ta g
m

θ μ θ

θ μ μ θ

θ μ θ μ

θ μ θ μ

− − =

= − +

= + −

= + −⎡ ⎤⎣ ⎦

 

now when  30 10kg 0.2 9,8 ?T N m g aμ= = = = =  

( ) ( )3 cos 0.2sin 1.96a θ θ= + −⎡ ⎤⎣ ⎦ , checking each alternative 

 
A. 20 1.04m/saθ = ⇒ =  

B. 25 1.08m/saθ = ⇒ =  

C. 210 1.1m/saθ = ⇒ =  

D. 215 1.09m/saθ = ⇒ =  

E. 220 1.06m/saθ = ⇒ =  
 
 
 

    mg 

N
T

θ

Nμ  
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Question 18   Answer  D 
 
 

A. resolving vertically   

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

cos cos 90 0

cos sin

sin cos

cosec sec is true

P Q

P Q
P Q

P Q

θ θ

θ θ

θ θ

θ θ

− − =

=

=

=

 

 

B. 2 2 2R P Q= +  is true 
 

C. resolving horizontally 

 
( ) ( )
( ) ( )

sin sin 90 0

sin cos is true

R P Q

R P Q

θ θ

θ θ

− − − =

= +
    

 

D. ( ) ( ) ( )
( ) ( )sin

cos sin tan
cos

PP Q
Q

θ
θ θ θ

θ
= ⇒ = =   

( )cot Q
P

θ =        D. is false     

 

E. 0P Q R+ + =   is true 
 

Question 19   Answer  A 
 
 

Using implicit differentiation 2 26 16 0x xy y− − = .  

( ) ( ) ( )2 26 16 0d d dx xy y
dx dx dx

− − =   using the product rule in the middle term 

( ) ( ) ( ) ( )2 26 6 16 0d d d dx x y y x y
dx dx dx dx

− − − =  

( ) ( ) ( ) ( )2 26 6 16 0d d dy d d dyx x y y x y
dx dy dx dx dy dx

− − − =  

2 6 6 32 0dy dyx x y y
dx dx

− − − =  

( )2 6 32 6 32 6dy dy dyx y y x y x
dx dx dx

− = + = +  

3
16 3

dy x y
dx y x

−
=

+
             A. is false, all the options are true. 

B. is true
( )2, 1

1 2
2 N

dy m
dx −

= − =         C. is true
12,
4

1
8

dy
dx ⎛ ⎞

⎜ ⎟
⎝ ⎠

=  

D. is true
( )8,4

1
2

dy
dx −

= −                   D. is true
( )8, 1

1 8
8 N

dy m
dx − −

= = −  

90 θ−

R

P

Q

θ
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Question 20   Answer  B 
 
 

Initially no x is present, ( )0 0x = , after a time of  t, equal parts of x combine, leaving  

( ) ( )anda x b x− −  of  a and b respectively, since 0k >  and initial the reaction rate is 
fastest, and slowing down as time goes on, the solution is B.  
 

 
Question 21   Answer  B 
 

Consider the mass  2m  moving downwards, resolving downwards, 
( ) 2 21 m g T m a− =  
Consider the mass  1m  moving upwards, resolving upwards, 
( ) 1 12 T m g m a− =  
to solve for a add the two equations to eliminate T  

( ) ( )
( )

( )

2 1 2 1

2 1 1 2

2 1

1 2

2 1

1 2

2

1 2

2 1

1

so that

and
5

1
5

1
1 let
51

1 1 5 1 5 5 1 4 6
1 5
3
2

m g m g m a m a
m m g m m a

m m g ga
m m

m m
m m
m
m m

m m
m

α

α α α α α
α

α

− = +

− = +

−
= =

+
−

=
+

−
= =

+

−
= − = − = + =

+

=  

 
 

Question 22   Answer  D 
 

All the slopes ( dashes are positive slopes ) at 0 0x t= =  the slope is 2,   
The solution curves are of the form 2tx C e−= − , differentiating gives 

22 tdx e
dt

−=  as the differential equation 

 
 

END OF SECTION 1 SUGGESTED ANSWERS 
 

T

1m 2m  

2m g

T

1m g



Specialist Mathematics Trial Examination 2  2007  Solutions   Section 2             Page 12 

© KILBAHA PTY LTD 2007 

SECTION 2 
Question 1 
 

a. ( ) 1 11050sin 50sin where 10
10 10

x uf x y u x− −−⎛ ⎞ ⎛ ⎞= = = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
( )

( )

2

2 2

50 1
100

50 50
100 100 10

dy du
du dxu

dy dy duf x
dx du dx u x

= =
−

′ = = = =
− − −

  M1 

 ( )
( ) 22

50 50
20100 20 100

f x
x xx x

′ = =
−− − +

 

 ( )
( )
50
20

f x
x x

′ =
−

 for     0 20x< <        

so         50 20a b= =         A1 
 
b.  
 
 
 
 
 
 
 
 
 
 
 
  
  A1  
c.  

solving 1 1050sin 30
10

x− −⎛ ⎞ =⎜ ⎟
⎝ ⎠

  

  on a graphics calculator     
 
  ( )15.6464,30  
   
  so the diameter is  31.2928cm        
            A1 
 

y 

x 

10

30 
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Alternatively 1 10 3 10 3sin sin
10 5 10 5

x x− − −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

310 10sin 15.6464
5

x ⎛ ⎞= + ≈⎜ ⎟
⎝ ⎠

   so the diameter is  31.2928cm  

 

d. i. 2
b

y
a

V x dyπ= ∫  

 

1 110 1050sin sin
10 50 10
10sin

50 10

10 10sin
50

x y xy

y x

yx

− −− −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
−⎛ ⎞ =⎜ ⎟

⎝ ⎠
⎛ ⎞= + ⎜ ⎟
⎝ ⎠

   M1 

  

30
2

0

10 10sin
50
yV dyπ ⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⌠
⎮
⌡

      A1 

 

  ii. using a graphics calculator 315,964.301 cmV =    A1 
 
 
 
 
 
 
e. when the bowl is filled to a height of  h its volume is  

 
2

0

10 10sin
50

h

yV dyπ ⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⌠
⎮
⌡

    so  that 

  
2

310 10sin and given 10cm /sec
50

dV h dV
dh dt

π ⎛ ⎞⎛ ⎞= + = −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  A1 

  2
10.

10 10sin
50

dh dh dV
dt dV dt hπ

−
= =

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

             when 25h =    M1 

  2
10

110 10sin
2

dh
dt

π

−
=

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

  0.015cm/secdh
dt

= −  

  the water level is falling at 0.015cm/sec      A1 
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Question 2 
 

2 3OA a i j k= = + +             5 3OB b i y j k= = + −              

3 2OC c i j k= = − −      3 4 6OD d i j k= = − + +  

a. If  13AB =     ?y =  

 
( ) ( )

( )

5 3 2 3

3 3 4

AB AO OB OB OA i y j k i j k

AB i y j k

= + = − = + − − + +

= + − −
   M1 

 ( ) ( )2 29 3 16 25 3 13AB y y= + − + = + − =  

 

( )
( )

2

2

25 3 169

3 144
3 12

y

y
y

+ − =

− =

− = ±

 

 15 or 9y y= = −  both answers are acceptable    A1 
 

b. If AB  makes an angle of  0135  with the z-axis, ?y =  

 ( )
( )

0

2

4 2cos 135
225 3y

−
= = −

+ −
      M1 

 

( )( )
( )( )

( )
( )

2

2

2

2

8 2 25 3

64 2 25 3

32 25 3

3 7

3 7

y

y

y

y

y

= + −

= + −

= + −

− =

− = ±

 

 3 7y = ±  both answers are acceptable     A1 
 

c. If AB  is perpendicular  to CD    ?y =       . 0AB CD =     

 
( ) ( )3 4 6 3 2

6 5 8

CD CO OD OD OC i j k i j k

CD i j k

= + = − = − + + − − −

= − + +
  M1  

 
( )

( )
. 18 5 3 32 0

5 3 50
3 10

AB CD y

y
y

= − + − − =

− =

− =

 

 13y =           A1 
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d. If  AB  is parallel to CD   then    AB CDλ=     M1 

 1
2

AB CD= −  from the andi k  components,   

 it must also be true for the j    so that 53
2

y −
− =       

 1
2

y =           A1  
 

e. ( ) ( )2 3 3 2CA CO OA OA OC i j k i j k= + = − = + + − − −  

 4 3CA i j k= − + +   1 16 9 26CA = + + =  

 6 5 8CD i j k= − + +   36 25 64 125 5 5CD = + + = =   M1 

 . 6 20 24 50CA CD = + + =   

 ( ) . 50 2 5 130cos or
135 5 26 26

CA CDDCA
CA CD

∠ = = =    A1 

  
  

     
    
Question 3 
     
a. 22.5 17.5 8u v s= = =      
 using constant acceleration formulae      M1  

 
2

u vs t+⎛ ⎞= ⎜ ⎟
⎝ ⎠

     17.5 22.58
2

t+⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 0.4 sect =          A1 
  
 2 2 2v u as= +  2 217.5 22.5 16a= +  

 2200 12.5m/s
16

a −
= = −        A1 

C D 

A 

2 5

26
h 

( ) ( )2 2
26 2 5

26 20

6 A1

h

h

h

= −

= −

=



Specialist Mathematics Trial Examination 2  2007  Solutions   Section 2             Page 16 

© KILBAHA PTY LTD 2007 

b. i. 
 
 
 
 
 
 
 
 
 
 
 

  
  for forces on the diagram      A1 
 ii. now  2 0120,000 W 16 500kg 20P R v m θ= = = =  

resolving up and parallel to the slope 

  ( )sinP R mg ma
v

θ− − =       A1  

       

  ( )2 0120,000500 16 500 sin 20a v g
v

= − −  

  ( )
2

0240 4 sin 20
125

va g
v

= − −        A1 

            

 iii. Use  dva v
dx

=  

  
( )3 030,000 4 125 sin 20

125
v g vdvv

dx v
− −

=     M1 

  
( )

2

3 0

125
30,000 4 125 sin 20

vdx dv
v g v

=
− −

     A1 

          
  the distance travelled from rest to 17.5 m/s, is the definite integral  

  
( )

17.5
2

3 0

0

125
30,000 4 125 sin 20

vx dv
v g v

=
− −

⌠
⎮
⌡

     A1 

 
 iv. using a graphics calculator the distance is 27.80 m   A1 
 
   

020
mg 

P
v

R 

N 
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Question 4  

a. Given that  5 1cos
5 4
π +⎛ ⎞ =⎜ ⎟

⎝ ⎠
   and   

( )2 5 5
sin

5 4
π −⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

 ( ) ( ) ( )2 2cos 2 cos sinA A A= −       M1 

 2 22cos cos sin
5 5 5
π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 

( )

( )

( )

2
2 2 5 52 5 1cos

5 4 4

2 5 52 5 2 5 1cos
5 16 16

4 5 12 4 5 4cos
5 16 16

π

π

π

⎛ ⎞−⎛ ⎞+ ⎜ ⎟⎛ ⎞ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟
⎝ ⎠

−+ +⎛ ⎞ = −⎜ ⎟
⎝ ⎠

−−⎛ ⎞ = =⎜ ⎟
⎝ ⎠

 

 2 5 1cos
5 4
π −⎛ ⎞ =⎜ ⎟

⎝ ⎠
        A1 

 
 
b. using ( ) ( )2 2sin 1 cosA A= −  

 ( )

2 2

2

2

2 2sin 1 cos
5 5

5 2 5 12 5 1sin 1 1
5 4 16

π π

π

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− +⎛ ⎞−⎛ ⎞ = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

     M1 

 

( )2

2

16 6 2 52sin
5 16

2 10 2 5sin
5 16

π

π

− −⎛ ⎞ =⎜ ⎟
⎝ ⎠

+⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 
( )2

2 5 52 2sin since sin 0
5 16 5
π π+⎛ ⎞ ⎛ ⎞= >⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
   take the positive only 

 
( )2 5 52sin

5 4
π +⎛ ⎞ =⎜ ⎟

⎝ ⎠
        A1 
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c. 
( )

21

2 5 55 14
4 4

i

⎛ ⎞
+⎜ ⎟−

+⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

21
2 24 cos sin
5 5

iπ π⎛ ⎞⎛ ⎞ ⎛ ⎞= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
      M1 

 

21
224 cis

5
214cis

5
214cis 4

5

4cis
5

π

π

π π

π

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= −⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

        M1 

 ( )5 1 2 5 5i= + + −        A1 

 

d. ( ) ( )5 1 2 5 5
n

i⎛ ⎞⎛ ⎞+ + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

4cos 4 sin
5 5

4 cis 4 cis
5 5

n

n
n n

i

n

π π

π π

⎛ ⎞⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

      M1 

 4 cos sin
5 5

n n niπ π⎛ ⎞⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
   

is a real number, so that the imaginary part must be zero 

 
sin 0

5

5

n

n k

π

π π

⎛ ⎞ =⎜ ⎟
⎝ ⎠

=

 

 5 wheren k k J= ∈        A1  
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e. ( )5 32 32cis 2z kπ π= − = +  

 22cis
5 5

kz π π⎛ ⎞= +⎜ ⎟
⎝ ⎠

        M1 

 ( ) ( )( )10 2cis 5 1 2 5 5
5 2

k z iπ⎛ ⎞ ⎡ ⎤= = = + + −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
 

 31 2cis
5

k z π⎛ ⎞= = ⎜ ⎟
⎝ ⎠

       A1 

 ( )2 2cis 2k z π= = = −  

 
( ) ( )( )11 2cis 5 1 2 5 5

5 2
32 2cis
5

k z i

k z

π

π

⎛ ⎞ ⎡ ⎤= − = − = + − −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 

 there are 5 roots, all the roots are equally spaced by  

 0or 36
5
π  around a circle of  radius two, there is one real    A1  

 root and two pairs of complex conjugates. 
 
 For the five roots on the diagram below     A1 
 
 

( )Re z  

( )Im z

1 2 3 
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Question 5 
 

a. 10 0.2dy gt y
dt

= − −  

 ( )0.2 10 0 1.5dy y gt y
dt

+ = − =  

 00.2 10 1.5k b y= = =        A1 
 

b. ( ) ( ), 10 0.2 0 1.5dy f y t gt y y
dt

= = − − =  

 Euler’s method         0 01.5 0 0.2y t h= = =  
 ( ) ( )1 0 0 0 x x, 1.5 0.2 10 9.8 0 0.2 1.5 3.44y y hf y t= + = + − − =    M1 

 ( ) ( )2 1 1 1 x x, 3.44 0.2 10 9.8 0.2 0.2 3.44y y hf y t= + = + − −  
 2 4.9104y =          A1 
 

c. differentiating ( ) 5295 293.5 49
t

y t e t
−

= − − with respect to t 

 5 5x0.2 293.5 49 58.7 49
t tdy e e

dt
− −

= − = −      A1  

 substituting into  LHS   

 
5 5

x

0.2 58.7 49 0.2 295 293.5 49

49 59 49 0.2 10 9.8 shown

t tdy y e e t
dt

t t RHS

− −⎛ ⎞
+ = − + − −⎜ ⎟

⎝ ⎠
= − + − = − =

   M1  

 

 also  it satisfies the initial conditions  ( )0 295 293.5 0 1.5y = − − =  
 

d. solving  ( ) 5295 293.5 49 0
t

y t e t
−

= − − =    
 on a graphics calculator gives  2.02676t T= =  

 ( )
2.02676

5 x2.02676 295 293.5 49 2.02676 0y e
−

= − − ≈    shown  A1  
 

e. the horizontal component  of velocity   10x =     so   10x t=  
 horizontal distance travelled   
 ( ) x2.0267 10 2.02676 20.268mx = =       A1  
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f. for maximum height    558.7 49 0
tdy e

dt
−

= − =  

 

5

5

5

58.7 49

49
58.7

587
490

t

t

t

e

e

e

−

−

=

=

=

         M1 

 5875log 0.9031
490et ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

 The time to reach maximum height is 0.903 sec    A1  
  

For maximum height     

 ( )
0.9031

5 x0.9031 295 293.5 49 0.9031y e
−

= − −  

The maximum height reached is 5.748m        A1  
 

 horizontal distance travelled  at this time  
 ( ) x0.9031 10 0.9031 9.031mx = =       A1 
  
g. 10x =    always,  
 when it hits the ground x10 9.8 2.0267 9.862y = − = −       

 the speed   2 2 2 210 9.862v x y= + = +  
 speed 14.045 m/sv =         A1 
 

h. the angle at which it hits the ground  is ψ   
 y  is downwards since it is negative 
 

 
( )

1 0

tan

9.862tan 44.60
10

y
x

ψ

ψ −

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

  
 
 
 
 
 0 '44 36ψ =          A1 
       

y  

x

ψ

 
v 
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i. graph passes through y-axis at 1.5y = ,  
only for  0 20.268x≤ ≤  

 graph is not symmetrical, not parabolic,      A1 
maximum at ( )9.031,5.748   

 

x

y

-5 0 5 10 15 20
0

2

4

6

 
 

 
         

 
 
 
 
 
 
 
 
 

 
 
 
 
 

END OF SECTION 2 SUGGESTED ANSWERS 


